博客
关于我
pandas数据分析之常用方法
阅读量:752 次
发布时间:2019-03-22

本文共 313 字,大约阅读时间需要 1 分钟。

前言:pandas是python中进行数据处理的一个非常有用的库,利用好pandas,可以十分方便的对数据进行处理以及统计分析

直接上代码

一. Pandas数据处理

1.1 pandas中删除dataFrame中行/列

dataFrame中删除满足条件的行

df = df.drop(df[df.col_name >= 5].index)print(df)

dataFrame中删除列

df = df.drop('col_name', axis=1)

dataFrame中使用apply方法

df['signal'] = df.apply(lambda x: function(x.name, x.age), axis=1)

转载地址:http://ikqwk.baihongyu.com/

你可能感兴趣的文章
MySQL 的Rename Table语句
查看>>
MySQL 的全局锁、表锁和行锁
查看>>
mysql 的存储引擎介绍
查看>>
MySQL 的存储引擎有哪些?为什么常用InnoDB?
查看>>
mysql 索引
查看>>
MySQL 索引失效的 15 种场景!
查看>>
MySQL 索引深入解析及优化策略
查看>>
MySQL 索引的面试题总结
查看>>
mysql 索引类型以及创建
查看>>
MySQL 索引连环问题,你能答对几个?
查看>>
Mysql 索引问题集锦
查看>>
Mysql 纵表转换为横表
查看>>
mysql 编译安装 window篇
查看>>
mysql 网络目录_联机目录数据库
查看>>
MySQL 聚簇索引&&二级索引&&辅助索引
查看>>
Mysql 脏页 脏读 脏数据
查看>>
mysql 自增id和UUID做主键性能分析,及最优方案
查看>>
Mysql 自定义函数
查看>>
mysql 行转列 列转行
查看>>
Mysql 表分区
查看>>